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Abstract: In patients with age-related macular degeneration (AMD), the risk of progression to
late stages is highly heterogeneous, and the prognostic imaging biomarkers remain unclear. We
propose a deep survival model to predict the progression towards the late atrophic stage of AMD.
The model combines the advantages of survival modelling, accounting for time-to-event and
censoring, and the advantages of deep learning, generating prediction from raw 3D OCT scans,
without the need for extracting a predefined set of quantitative biomarkers. We demonstrate, in
an extensive set of evaluations, based on two large longitudinal datasets with 231 eyes from 121
patients for internal evaluation, and 280 eyes from 140 patients for the external evaluation, that
this model improves the risk estimation performance over standard deep learning classification
models.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Age-related macular degeneration (AMD) is a leading cause of severe, irreversible vision loss
in people over age 60, with an estimated 196 million patients affected worldwide in 2020 [1].
AMD slowly progresses from early/intermediate to late stage of the disease, where central vision
loss can occur. Late AMD includes neovascularization or atrophy of the retina, with different
underlying pathomechanisms. Although the early and intermediate stages of the disease typically
carry no visual symptoms, morphological changes in the outer retina can be observed. In
particular, the atrophic stage is characterized by gradual morphological deterioration of the outer
retina and the thinning and loss of the photoreceptors [2].

Color fundus photography (CFP) and optical coherence tomography (OCT) are the most
common imaging modalities used to detect and monitor AMD. Especially OCT, being a 3D
imaging modality with a micrometer-scale resolution, allows studying the morphological changes
associated with the disease in great detail. Nevertheless, in patients with intermediate AMD, the
risk of progression to late stages is highly heterogeneous, and the prognostic imaging biomarkers
remain unclear. There is therefore an unmet need to develop predictive models for estimating the
risk of the onset of late AMD. Having an accurate risk estimators would also help improve the
understanding of the underlying pathomorphological mechanisms.

The development of predictive models of AMD relies on the availability of longitudinal
imaging data. The most common source of such data, eyes with drusen and no late AMD, comes
from observing the fellow eyes of patients treated for neovascular AMD [3,4], from the control
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arms of intermediate AMD intervention studies [5], or from the observational longitudinal studies
[6,7]. However, the slow nature of AMD progression requires very long observation times, and
in the studies with only a few years of duration, only a small minority of patients are observed
progressing to late AMD.

To tackle the above problems and obtain effective risk estimation predictive models, we
combine two powerful techniques: survival analysis and deep learning. Survival analysis is
specifically designed to handle longitudinal data, as it is able to model both the occurrence of
events and their censoring when the event time is unknown. However, traditional survival models
are often limited in terms of modeling complexity, as they require a representation in the form of
a predefined set of quantitative imaging biomarkers, which are often difficult to extract or are
unknown a priori.

On the other hand, the developments in the field of artificial intelligence (AI) and especially
deep learning, provided the capability to learn effective representations directly from the raw
imaging data. Yet, the majority of deep learning in retina focuses on prediction from 2D images
rather than 3D volumes, and on classification or regression tasks, rather than risk estimation or
time-to-event prediction.

1.1. Related work

Predictive modeling is a key task in medical imaging and has been applied to many clinical
problems in the field of ophthalmology, as it is essential to identify patients at risk, as well as
identify novel risk factors. The task is often treated as an image classification problem. In [8],
qualitative and quantitative OCT features were generated at baseline to train multivariate logistic
regression models to estimate the risk of progression from intermediate to non-neovascular
atrophic AMD. In [9], a large set of quantitative imaging biomarkers were automatically extracted
and used as covariates to predict the progression to a late AMD stage with a generalized
linear model. Similarly, in [7], qualitative features were used to provide risk estimates using
decision trees. These predictive models suffer from low model capacity and cannot handle
high-dimensional data, therefore they are limited to a set of quantitative features and are not able
to exploit new features in the form of imaging patterns present in raw image data. In contrast, deep
learning allows building models directly from raw image data and overcome these limitations.

Several deep learning models have been developed for predicting progression from intermediate
to late AMD. For instance, Russakoff et al. [10] developed a specific deep learning network for
2D B-scan classification, called AMDNet, to predict whether eyes are likely to progress to wet
AMD. Banerjee [11] proposed a deep recurrent network for predicting GA progression from
a time series of a set of 21 OCT imaging biomarkers and evaluated it for multiple prediction
intervals. A two-stage system for prediction of progression to neovascular AMD from OCT
was explored in [4], which consists of two serially-connected neural networks. The first one
segments the clinically important features in OCT, and the segmentation maps are provided to the
second, classification network. Such an approach simplifies the model interpretation and makes
the second stage device-agnostic. Bora et al. [12] described a deep neural network classifier that
predicts a risk of developing diabetic retinopathy from color fundus images. However, the above
methods operate in a classification setting, which ignores the temporal information in the data,
namely the time-to-event (progression time point or censoring) is not taken into account.

Survival models are an essential tool for modeling longitudinal medical data. They allow
estimating risks, and correctly accounting for censoring. A common family of survival models
are based on the linear Cox Proportional Hazard (CoxPH) model [13], and have previously
been applied to AMD progression prediction from a small set of clinically relevant quantitative
imaging biomarkers [14]. Adaptation have been proposed to extend survival models to non-linear
models, such as piece-wise exponential models [15] or early survival neural networks [16,17].
Another approach, denoted as Random Survival Forest, is an adaptation of the random forest with
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a specific survival-based decision tree branching rule that allows for the analysis of right-censored
survival data [18].

Recently, survival methods have been adapted to standard deep learning architectures. In
[19], the authors combine a deep convolutional neural network (CNN) feature extractor with a
traditional linear CoxPH model. Similarly, DeepSurv [20] and DeepConvSurv [21] are based
on the Cox model where the linear part is replaced by a fully connected network or a CNN,
respectively. Those models share the same limitations as the standard Cox models, namely
the proportionality and time independence assumptions. On the other hand, DeepHit [22] and
Logistic Hazard (LH) [23] model directly the survival times without the previous assumptions
and allow competing risks.

1.2. Contribution

In this paper, we explore combining the strengths of survival statistics and deep learning in the
form of a deep survival prediction algorithm for retinal OCT. This method is applied to the
problem of predicting progression from intermediate to late atrophic AMD from longitudinal 3D
retinal volumes (Fig. 1).

Fig. 1. Example of a retinal OCT showing conversion from early/intermediate AMD (left) to
the first OCT signs of atrophy (right). The atrophic lesion (red box) is where the loss of outer
retinal layers (subsidence of the outer plexiform and inner nuclear layer and hyperreflective
wedge shaped bands in Henle’s nerve fiber layer), loss of the retinal pigment epithelium and
hypertransmission of the signal into the choroid are noticeable. The yellow triangles denote
the extremities of the atrophic lesion.

The proposed method allows to correctly account for the time-to-event and the right-censoring
of patients, while learning from raw 3D image data, and adapts the LH loss presented in [23] to
longitudinal retinal OCT. In brief, the contributions of this paper are the following:

1. We compare and quantitatively evaluate the benefit of using a deep learning survival loss
in contrast to a standard binary cross entropy loss for prediction from raw OCT data, and
to a traditional Cox proportional hazards (CoxPH) model trained from a set of quantitative
imaging biomarkers.

2. The predictive model operates on 3D OCT volumes, instead of 2D images, and the
performance and the generalization of the model is assessed on two large longitudinal
datasets of patients with intermediate AMD.

3. We analyze the best-performing deep learning model with post-hoc interpretability methods
to investigate the predictive role of different retinal regions for a progression to atrophy.
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2. Methods

2.1. Predictive model formulation

In a longitudinal dataset, for each patient eye, a discrete set of observations are available for the
visit times t0 · · · tN . After the last observation, the eye is considered as positive if a progression
from intermediate to atrophic AMD stage occurred at a particular visit, or as censored if the eye
remained in intermediate AMD stage within the study interval. We address the task of predicting
the progression from retinal OCT scans with two different deep learning-based methodological
approaches, where we consider it either as a survival modelling task or as a binary classification
task (Fig. 2).
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Fig. 2. The difference between survival and binary classification setting, in terms of labels
and predicted output. In the survival setting with logistic hazard (LH) loss, the time-to-event
is encoded in the target label with a single value of one at the event time, or all zero values
for a censored patient. In the binary classification setting, a threshold for the time-to-event is
defined to obtain a binary label, a positive one for a patient progressing before T0, and a
negative one otherwise.

Survival modeling task: Let T∗ be the time point when the event was observed and ∆T the
interval between two visits. The occurrence of this event is described with the following functions
in a survival setting: the probability mass function (PMF), f , which describes the probability
that the event occurs at a specific time point (between tj and tj + ∆T); the survival function, S,
which is the probability that the event occurs after a given time; and the hazard rate, h, as the
probability that the event occurs between tj−1 and tj. They are defined in the following way:

f (tj) = P(T∗ = tj)

S(tj) = P(T∗>tj) =
∑︂
k>j

f (tk)

h(tj) = P(T∗ = tj |T∗>tj−1) =
f (tj)

S(tj−1)
.

(1)
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Traditional or deep learning-based survival models allow estimating the hazards or survival
probabilities based on the available observations.

Binary classification task: Let T0 be the time interval of clinical relevance. The observation
is considered as a positive case when the progression happens before T0, and a negative otherwise.
Deep learning models can then be trained for this task using a standard binary cross-entropy loss.
We want to remark that the binarization of the time-to-event results in a partial loss of information.
Indeed, all progressors regardless of the time to progression are in the same category, similarly for
censored patients, where the time to censoring is ignored. Thus, the task consists of determining
the probability Pprogression of progressing to a late atrophic AMD stage within the predefined
interval:

Pprogression = P(T∗ ≤ T0) (2)

It is worth noting that the probability of progression can be directly linked with the survival
probability:

Pprogression = P(T∗ ≤ T0)

P(T∗ ≤ T0) = 1 − P(T∗>T0) = 1 − S(T0)

Pprogression = 1 − S(T0)

(3)

It shows explicitly that the survival model tackles all possible intervals at once. We can also
switch from survival to binary setting for the evaluations in our experiments.

2.2. Survival modeling adaptation for deep learning

The deep learning backbone in the form of a CNN allows processing raw 3D OCT data, and to
learn through training to detect the imaging patterns relevant for the prediction tasks. However,
to build a deep learning survival model, we need an adapted training loss. Our work is based on
the logistic hazard (LH) loss [23], chosen because it does not require assumptions on the hazard
distribution. It is defined as:

L = −
1
n

n∑︂
i=1

κ(ti)∑︂
j=1

[yij log(h(tj |xi)) + (1 − yij) log(1 − h(tj |xi))], (4)

where xi is the available observation for patient i, h(tj |xi) is the predicted hazard for time tj given
the observation xi, yij indicates whether an event is observed at time tj for patient i, and k(ti) is the
index of the first event (progression or censoring). This loss represents the negative log-likelihood
of the observed events in terms of hazards. The hazards after the event (j>k(ti)) are ignored to
account for censoring. The final loss resembles the binary cross-entropy, except the hazards
are parametrized with a neural network using a sigmoid activation function and an additional
specific censoring mask. Each label has Nvisit variables (in our case 6 times 12-month intervals),
and it contains a single value 1 at the time of the event, and all zero values if censored (Fig. 3).

2.3. Volume preprocessing

An illustration of the applied OCT preprocessing procedure is shown in Fig. 4. All 3D OCT
volumes were flattened according to the inner limiting membrane (ILM) layer, obtained with
automated segmentation by IOWA reference algorithms [24,25]. ILM was chosen because it is a
robust segmentation target, and any resulting segmentation errors are distant from the primary
region of interest, which in the case of AMD is in the outer retina. The 3D OCT volumes were
then cropped to a fixed physical size (3.8 mm in depth along B-scans, 5.6 mm in width, 0.62 mm
in height along A-scans) centered on the fovea and resized to 32 × 512 × 160 voxels, respectively.

The height dimension was cropped to keep only the clinically relevant region composed of
retinal layers (ILM to Bruch’s membrane) and the choroid. Similarly, the peripheral B-scans
were removed, as the atrophy of the retina often starts in the central region. The cropping and
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Fig. 3. Example of time-to-event labeling. Labels for hazards and censoring are used for
the training. In the upper part of the figure, examples of label and censoring vectors are
displayed. The label indicates the time of progression as a one-hot vector and the censoring
vector the available visits before censoring.
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Fig. 4. Example of OCT volume preprocessing steps before supplying the volume to the
deep learning (DL) model. The OCT volume is flattened using ILM layer segmentation, and
then cropped to a common field of view, resized, and intensity normalized.

resizing was done mainly to reduce the memory (VRAM) footprint required for the training on a
GPU. The intensity values were normalized to have a zero mean and unit standard deviation per
OCT volume.

3. Experimental setup

3.1. Datasets

Participants For our experiments, we used data from two longitudinal imaging studies of AMD
patients with eyes having drusen and no late AMD at baseline (Table 1). The first dataset, MUV,
consists of OCT scans of patients with at least one eye with drusen and no late AMD, part of a
long-term observational study at the Department of Ophthalmology, Medical University of Vienna
(MedUni Wien) [6]. It is composed of 231 eyes from 121 patients (91% with early/intermediate
AMD, i.e., bilateral drusen). Each eye was imaged with a 3- to 6-month intervals, and a follow-up
duration ranged from two to seven years. The second dataset is obtained from the sham arm of
the LEAD study [5], and includes well curated OCTs of patients with bilateral large drusen AMD
(a subset of iAMD) at baseline. The LEAD dataset consists of 280 eyes from 140 patients, and
each eye was imaged with 6-month intervals for a study duration of 3 years. The cumulative
number of converters over time in both datasets is displayed in Fig. 5.

Table 1. Properties of the employed longitudinal OCT datasets. It describes the number of patients,
eyes, OCT scans, and number of eyes that progressed, as well as the duration of the follow-up and

the interval between visits.

Dataset Eyes/Patients OCTs progressors Visit interval Visits Duration

MUV 231/121 3066 38 3-6 months 3+ 53 ± 34 months

LEAD 280/140 1531 47 6 months 7 36 months

All patients gave informed consent prior to inclusion in the respective studies. This retrospective
analysis was approved by the Ethics Committee at MedUni Wien (EK Nr: 1246/2016). All study
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Fig. 5. Cumulative number of converted eyes with respect to the time to progression in the
MUV dataset (left) and LEAD dataset (right).

procedures were conducted in accordance with the Declaration of Helsinki, and all the patient
data were pseudonymized.

OCT imaging and grading of AMD progression Both datasets consisted of OCTs scans
acquired with a Spectralis scanner (Heidelberg Engineering, Heidelberg, DE). The OCT volumes
consisted of 49 B-scans having 512 − 1024 × 496 pixels, and covered an en-face field of view of
20◦ × 20◦. Progression to late atrophic AMD was considered as soon as complete RPE and outer
retinal atrophy (cRORA) was detectable on OCT. We adopted the cRORA definition given by the
classification of atrophy meetings (CAM) program [2]. Therefore, the following features needed
to be present: at least 250 µm zone of hypertransmission (1) and disruption of RPE of at least
250 µm (2) and an additional evidence of overlying photoreceptor degeneration (3). To identify
the time point of progression to late AMD, the OCT scans of both datasets were analyzed and
(re)graded by the same team of retinal experts at MedUni Wien for consistency. Eyes that had
atrophy but did not fulfil the cRORA criteria, as well as those that developed only neovascular
AMD, were considered not to have progressed.

The MUV dataset, where a progression to late atrophic AMD was observed in 41 eyes, was
used for training and internal evaluation of the predictive models. It was divided into five folds to
perform cross-validation, with three folds for training, one for validation, and one for testing. The
split was performed at the eye level, and the folds were stratified with respect to the proportion of
progressors to ensure their representativeness, given the small number of progressing eyes. In
contrast, LEAD dataset, where 47 eyes progressed to late atrophic AMD, was used exclusively as
an external validation set.

3.2. Deep learning setup

All deep learning experiments are based on the 3D ResNet18 CNN backbone as defined in [26],
pretrained on Kinetics-400 video action recognition dataset. Performing the training and the
prediction in 3D allows to directly use the available volume-level progression labels.

The chosen 3D pretrained ResNet18 gave a good trade-off between capacity and trainability
given the size of our datasets. Because of the low ratio of converters in MUV and LEAD dataset
with around 16% of progressors, the censored patients were randomly under-sampled by 50% in
the training set to counteract the imbalance. We kept the original ratio for the validation and
the test sets to get a performance estimation representative of the study cohort. During training,
the following data augmentation was applied: random cropping, flip (vertical axis), random
rotation and contrast augmentation. The model was trained with AdamW gradient descent
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method [27]. The optimization parameters (learning rate, β1, β2 and weight decay) were chosen
through hyperparameter tuning using a Python library Ray Tune. The model selection was based
on picking the best epoch score on the validation set.

3.3. Evaluation procedure

Method baselines: We compare our proposed deep survival model (Deep LH) with two other
baselines.

1. Deep binary classification models, which are trained to predict a progression within a
specific time interval. They output a single value, corresponding to the probability of
a progression occurring within the target interval. We trained the model for 12, 24 and
36-month intervals. Models are trained with binary cross-entropy and are denoted as Deep
BCE models.

2. CoxPH model [13] based on a set of quantitative OCT imaging and demographic features.
These imaging features were extracted from the OCT images using a set of deep learning-
based image segmentation algorithms. This followed the approach of [14] but excluding the
manual grading of color fundus images. The input vector contains seven features: baseline
age, three drusen related features (volume, height variability, and mean reflectivity) and
three features of hyperreflective foci volume (in three separate retinal layers). The model
was trained using the Python library scikit-survival [28] (version 0.12.0).

To provide a fair comparison, all models were trained on the same cross-validation folds. To
evaluate our models, we relied on two relevant metrics for prediction problems:

Dynamic AUC: Dynamic or cumulative area under receiver operating characteristic (AUC)
allows extending the standard AUC for time-dependent measures [29]. The dynamic AUC
consists of computing the AUC at different time intervals, in our experiments, 12, 24 and 36
months. The average AUC is then calculated as a measure of the performance across the three
time intervals.

For classification models, the output probability of progression was used as a general risk
score. For survival models, which output a time-dependent survival prediction, the dynamic
AUC was evaluated for the corresponding survival probability at that time.

Concordance Index: To evaluate the predicted survival function, we used the concordance
index (CCI), which accounts for censored data and describes the model’s ability to rank patients
given their actual risk. Concordance index allows to evaluate individual risk scores either from
the predicted hazards (Deep LH model) or from the binary probability (Deep BCE models). For
Deep LH models, the individual risk score is taken as the progression probability at 3 years,
which was selected based on predictions on the validation set. For Deep BCE models, we also
compute the CCI, by using the progression probability as a risk score.

Statistical analysis: To compare the CCI and dynamic AUC scores from different models,
the confidence intervals were obtained by bootstrapping the predictions with 1000 resamples
at the patient level, and Wilcoxon signed-rank test was applied to test differences. For the
external dataset, a single prediction is obtained by ensembling the 5 models resulting from the
cross-validation on the internal dataset. To compare survival curves in the risk groups experiment,
we used the logrank test with the statsmodel library [30].

3.4. List of experiments

Internal evaluation: Cross-validation was performed on the MUV dataset, for all models:
proposed Deep LH model, and baselines: Deep BCE models, and CoxPH model. The predictions
were evaluated with both dynamic AUC and CCI. Dynamic AUC allows evaluating the models in
a classification setting for different intervals. On the other hand, CCI evaluates the predicted
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risks of patients given their actual progression or censoring time. For each eye, all visits were
used for validation and test set metrics.

External validation: To further evaluate the generalization capabilities, the performance of
Deep LH, Deep BCE models and the CoxPH models were evaluated with dynamic AUC and CCI
on the external validation dataset LEAD. For each sample, the predictions of the five models from
the cross-validation on MUV dataset were averaged to get a single prediction score. Analogous
to internal validation, all visits were considered for performance evaluation.

Risk group analysis: To verify the stability of the predicted survival probabilities, the
thresholds defining four risk groups were generated based on the risk quartiles on the validation
set. The eyes in the test set were split into the four risk groups using these thresholds, and the
corresponding Kaplan-Meier curve estimates were computed. Statistical difference between low
risk and high risk group was tested.

Model interpretability: To understand the imaging patterns Deep LH model relies on for its
prediction, we first conducted an occlusion analysis. There, specific image regions were first
masked out in the OCT volumes (Fig. 8). Then, we computed the cross-validation performance
and compared it to the original dataset, where the relative drop in performance reveals the extent
to which each region contributes evidence to the prediction. The following regions were masked:
the fovea (central 1 mm region), the extrafovea (outside central 1 mm region), the choroid
(below the Bruch’s membrane), the inner retina (between ILM and INL-OPL) and the outer
retina (between INL-OPL and the Bruch’s membrane). In addition, because the occlusions may
introduce artifacts around their boundaries, we also computed Class Activation Maps (CAM)
[31]. In the case of Deep LH model, we obtain a CAM image for each hazard bin, i.e., every 12
months.

4. Results

4.1. Internal evaluation

The results of the internal evaluation are presented in Table 2 and the dynamic AUC curves are
plotted in Fig. 6. The CoxPH obtained slightly better performance in terms of average dynamic
AUC with a mean value of 0.80 (95 % CI [0.749 - 0.849]) and CCI with a value of 0.78 (95 % CI
[0.735 - 0.833]). However, Deep LH models obtained similar performance but outperformed
clearly all Deep BCE models. The latter produced mixed results, with the highest performance
achieved for 36-month training interval. Such training with a fixed prediction interval showed its
limits on this dataset with large amount of censored patients against survival models.

Table 2. Prediction performance results on the internal MUV dataset
(Dynamic AUC and Concordance Index) comparing various deep

models trained with LH and BCE loss, as well as a CoxPH model as
baselines. Each model is compared with Deep LH using the estimate
and confidence intervals (CI) obtained with bootstrapping. The best
performance is denoted in bold. The asterisk * denotes a statistically

significant difference compared to the proposed Deep LH.

Model CCI (95% CI) Dynamic AUC (95% CI)

CoxPH 0.78 [0.735 - 0.833] * 0.80 [0.749 - 0.849] *

Deep BCE 12m 0.58 [0.506 - 0.655] * 0.59 [0.512 - 0.662]*

Deep BCE 24m 0.67 [0.588 - 0.735] * 0.69 [0.614 - 0.761]*

Deep BCE 36m 0.70 [0.636 - 0.765] * 0.74 [0.683 - 0.800]*

Deep LH 0.77 [0.728 -0.825] 0.79 [0.738 - 0.839]
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Fig. 6. Dynamic AUC curves from the cross-validation on the MUV and the LEAD dataset.
AUC is evaluated for the 12, 24 and 36 months intervals. Five models are displayed: the
deep survival model (Deep LH), three deep classification models (Deep BCE models) and
the traditional survival model (CoxPH).

4.2. External validation

All the examined models were also evaluated on an external dataset (LEAD), both with CCI and
dynamic AUC. The metrics were evaluated by combining the five models of the cross-validation,
and their estimates and confidence intervals are displayed in Table 3 and in Fig. 6. The best
performance was clearly obtained by the proposed Deep LH model in terms of both dynamic
AUC with 0.82 (95% CI: 0.773 - 0.867), and CCI with 0.80 (95% CI: 0.745 - 0.846). All other
models had a significant drop in performance compared to MUV dataset. The deep classification
models struggled to generalize correctly to the external validation set. We also observed that the
AUC performance was increasing for longer intervals for the survival models, while this was not
the case for the binary classification models. Thus, the Deep LH model was able to generalize to
an external dataset without decrease in the predictive performance.

Table 3. Prediction performance results (Dynamic AUC and
Concordance Index) on the external validation set comparing various

deep models trained with LH and BCE losses, as well as a CoxPH model
as baselines. Each model is compared with Deep LH using the estimate

and confidence intervals (CI) obtained with bootstrapping. The best
performance is denoted in bold. The asterisk * denotes a statistically

significant difference compared to the proposed Deep LH.

Model CCI (95% CI) Dynamic AUC (95% CI)

CoxPH 0.72 [0.642 - 0.797] * 0.72 [0.629 - 0.799] *

Deep BCE 12m 0.59 [0.549 - 0.638] * 0.62 [0.566 - 0.664] *

Deep BCE 24m 0.59 [0.534 - 0.635] * 0.58 [0.524 - 0.632] *

Deep BCE 36m 0.66 [0.601 - 0.722] * 0.66 [0.600 - 0.722] *

Deep LH 0.80 [0.745 - 0.846] 0.82 [0.773 - 0.867]

4.3. Risk group analysis

The Kaplan-Meier curves are displayed in Fig. 7 and the estimated progression rates in Table 4.
Deep LH model, achieved the largest separation between low and high risk groups (delta =
0.570), while the intermediate risk groups were also correctly ordered. The CoxPh model had
the best survival in low risk group, but more overlap with intermediate and high risk groups. On
the other hand, Deep BCE models had a smaller separation, and the intermediate risk groups
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overlapped with the low risk one. All the models achieved statistically significant separation
between the low (bottom quartile) and high (top quartile) risk groups.

Es
t. 

Su
rv

iv
al

Days

Days Days

Es
t. 

Su
rv

iv
al

Es
t. 

Su
rv

iv
al

Days

Es
t. 

Su
rv

iv
al

Fig. 7. Kaplan-Meier curves of the four risk groups predictions on the internal MUV dataset.
We display two best deep classification models (Deep BCE 24m and Deep BCE 36m) as
well as two survival models (CoxPH and Deep LH).

Fig. 8. Illustrations of regions to be occluded for the model interpretation experiments. The
occluded region is filled with zeros and the prediction performance is computed on the MUV
dataset with cross-validation.

4.4. Model interpretability with occlusion analysis

The occlusion sensitivity allows us to identify the regions of the retinal OCT that contribute the
most evidence for the prediction at the cohort-level. The quantitative results are presented in
Table 5. The largest drops were observed in two regions: the inner and outer retina (32.9 %
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Table 4. Estimated progression rates in predicted risk groups on the internal
MUV dataset. The progression rate as well as its variance are displayed. In

addition, difference between the low risk and the high risk group are reported.

Model Low risk (progression) High risk (progression) Shigh - Slow

CoxPH 0.023 ± 0.0001 0.519 ± 0.0009 0.496 (p<0.001)

Deep BCE 12m 0.184 ± 0.0010 0.370 ± 0.0010 0.186 (p<0.001)

Deep BCE 24m 0.226 ± 0.0009 0.394 ± 0.0007 0.168 (p<0.001)

Deep BCE 36m 0.203 ± 0.0009 0.436 ± 0.0009 0.233 (p<0.001)

Deep LH 0.072 ± 0.0003 0.642 ± 0.0018 0.570 (p<0.001)

drop), both inside and outside the central mm region (19.0 % and 12.7%, respectively). The
choroid region did not provide much evidence for the progression prediction. These experiments
were coherent with the quantitative features used by the CoxPH model and previously reported
prediction experiments [14]. Finally, at an individual-level, we show an example of CAM
heatmaps for different prediction intervals (12, 24 and 36 months) in Fig. 9. We can observe a
concentration of higher activations for 36 months hazard prediction in the central drusenoid area.
In this case, the models correctly indentifies the time and the location of the conversion with
lower activations in the 12 and 24 months hazards predictions.

Table 5. The average concordance index across the 5 folds on
the MUV occluded dataset. The average concordance index

was obtained by averaging across the test folds. Predictions
were generated by Deep LH model.

Occlusion Average C-Index Relative

Fovea 0.64 ± 0.07 -19.0 %

Extrafovea 0.69 ± 0.05 -12.7 %

Choroid 0.74 ± 0.07 -6.3 %

Inner Retina 0.53 ± 0.10 -32.9 %

Outer Retina 0.53 ± 0.10 -32.9 %

No occlusion 0.79 ± 0.06 -
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12 months

24 months

36 months

After conversion

t=0

t=0

t=0

t=38 months

Fig. 9. An example of an eye that progresses in 38 months from baseline scan (t = 0) with
CAM (class activation map). The first three rows are the activations for the baseline visit
for 12, 24 and 36 months hazard prediction, the last row is the first available visit after the
progression (t = 38 months). The hazards activation increase over time, and highlights the
central drusenoid area where the future atrophy develops.

5. Discussion

The main challenge in predictive modeling from longitudinal data is that for many eyes, the
progression event is not observed. In our datasets, they were either lost to follow-up or did not
progress to the late stage of the disease within the respective study interval. This is further
exacerbated by the generally slow advancement of AMD. To tackle these problems, we explored
deep survival models based on Deep LH loss to predict progression from early/intermediate
AMD to late atrophic AMD from retinal OCT. This task is of particular clinical relevance as the
treatments based on compliment inhibition are expected for late atrophic AMD [32,33], affecting
more than 5 million people worldwide.

The proposed model has a deep learning component in the form of a CNN that enabled it
to exploit the full extent the raw OCT imaging data offers and capture the predictive features
hidden there. Unlike the majority of current deep learning approaches, we relied on a 3D CNN
backbone, to account for the available volume-level labels. The LH training loss allowed to
account for the information about the time to progression or patient censoring. To the best of our
knowledge, this is the first deep learning model that was able to estimate the risk of progression
to late atrophic AMD from raw 3D OCT volumes.
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We compared our method to other standard deep learning solutions that consider the prediction
task as a binary classification, i.e., whether an event has occurred or not within a given time
interval. The proposed Deep LH models were able to outperform such baseline models both in
terms of CCI and dynamic AUC, and on both the internal and more importantly, the external
dataset. For Deep BCE models, the large amount of censored visits and the variability in times of
progression (from 6 months to several years) limited the performance and indicated the benefits
of using deep survival models. In addition, survival models have an advantage in training a single
model as opposed to having to train a separate model for each desired prediction time interval.

We also compared our method to traditional Cox survival models based on a set of clinically
relevant imaging biomarkers. Deep LH model performed on par with the CoxPH model on
the internal dataset, but outperformed it on the important generalization to the external dataset.
Furthermore, such biomarker-based models required the availability of several powerful image
segmentation algorithms that are not necessary for the deep learning models. In addition, they
ignore potentially relevant predictive imaging patterns not captured by the predefined set of
quantitative features. Finally, because deep learning models require large datasets for training
to learn to detect predictive patterns, as new datasets and the number of observed patients are
expected to grow over time, the deep learning-based models are expected to keep improving
correspondingly.

We validated the models on a large external dataset from a sham arm of a prospective trial
to assess their generalization capability. In this challenging setting due to a population shift,
our proposed approach remarkably preserved its performance, while the other methods showed
decreased performance compared to the one on the internal dataset. In such a setting, the
time-dependent LH loss contributed greatly over the standard BCE one. The standard deep
classification models generalized poorly, especially the ones trained with short intervals. These
results prove the limit of the binary classification approach for prediction, where the models
failed to properly model the risk of progression. Despite the variability of observation periods
and progression times in the training dataset, the LH survival loss allowed to properly capture the
relevant longitudinal features.

We observed certain limitations that need further developments. Importantly, the proposed
model had difficulty to predict the exact time of progression. This is partly because the discrete LH
loss does not take into account the ordinal nature of the data. Similarly, the discretization of time
requires setting a few hyperparameters, the length of the bins (time discretization) and the number
of output neurons (defines the total duration covered by the network). We selected 6 intervals
of 12 months, to get a good tradeoff between balance (limited number of progressors for each
interval) and total duration of the MUV data (6 years). Improved losses or calibration methods
may be required to get more precise estimations of individual time to progression. Furthermore,
despite making use of large longitudinal datasets of natural progression of intermediate AMD,
our training datasets remain quite small from a deep learning perspective, in particular, in the
number of progressing eyes. Nevertheless, we chose to keep the two datasets separate to better
assess the generalization capabilities of the models. In terms of the data, we identified three points
that could be improved as part of future work: diversity of scanners, preprocessing step, and
inclusion of wet AMD patients. We trained exclusively on scans from a Spectralis OCT, which
limits the generalization of the deep learning models to other OCT devices, given their known
sensitivity to image domain shift. Instead of performing ILM-flattening in the preprocessing,
we could straighten according to Bruch’s membrane, but its segmentation is challenging due to
low intensity gradient under drusen and requires development of specialized algorithms. Finally,
we excluded the very few eyes progressing to wet-AMD, as the conversion and the subsequent
treatment with anti-VEGF drugs is expected to impact the risk of atrophy development. Thus, we
expect that those should be modeled separately. However, the proposed survival model could be
applied in the future to larger datasets of patients with wet-AMD cases.
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Deep learning models are known to improve with larger datasets available for training, hence in
the future, training on larger and more diverse studies will likely be needed to obtain performance
that goes substantially beyond offered by currently clinically known predictive features. Thus,
the ongoing large observational studies of patients with intermediate AMD, e.g., PINNACLE
[34] (NCT04269304, ClinicalTrials.gov) and HONU (NCT05300724, ClinicalTrials.gov) , will
offer a high potential to obtain even more predictive deep learning systems of AMD progression.
Finally, to further improve performance, specific CNN architectures that take into account the
anisotropy of OCT scans, will be explored. Similarly, hybrid deep learning models that perform
fusion of imaging and non-imaging features, e.g. patient demographic features with raw OCTs
images, will be developed as part of future work.

In conclusion, the proposed deep survival model allowed training long-term prediction models
directly from raw volumetric OCT scans. It accounted for the different times of progression
and for the censoring of patients. Finally, it provided better prediction performance and more
informative output than the commonly considered deep learning-based classification models.
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